Jumat, 10 Januari 2020

Menentukan Volume Kubus dan Balok

Balok merupakan bangun ruang tiga dimensi yang dibentuk oleh tiga pasang persegi atau persegi panjang, dengan paling tidak satu pasang di antaranya berukuran berbeda. Balok memiliki 6 sisi, 12 rusuk dan 8 titik sudut. Balok yang dibentuk oleh enam persegi sama dan sebangun disebut sebagai kubus. Beberapa contoh benda yang berbentuk kubus antara lain dadu, rubi, kotak kue, mainan susun kubus gambar, es batu dari cetakan kulkas, dan kotak musik. Sedangkan beberapa benda di sekitar kita yang berbentuk balok antara lain kotak pensil, kulkas, akuarium,  lemari, dan brankas

Kita dapat menentukan volume kubus dengan mengalikan luas alasnya dengan rusuk tingginya. Sedangkan pada balok volume ditemukan dengan cara mengalikan luas alas dengan tinggi balok.

Ayo Kita Menggali Informasi
Perhatikan gambar balok di bawah ini.
Balok merupakan bangun ruang tiga dimensi yang dibentuk oleh tiga pasang persegi atau pers Menentukan Volume Kubus dan Balok
Diketahui volume balok = 72 cm³,
V = p × l × t = 72
Untuk mendapatkan luas permukaan minimal, maka diperoleh pola penjumlah kebalikan dari ukuran balok tersebut, yaitu:
l+ l+ l =pl+pt+lt
pltplt
Nilai terkecil dari jumlah kebalikan ukuran balok tersebut diperoleh jika nilai plt terbesar (maksimum) atau nilai-nilai p, l, dan t adalah sama atau mempunyai silisih minimal dari tiga bilangan tersebut dan apabila tiga bilangan tersebut dikalikan sama dengan 72, yaitu p = 6, l = 4, dan t = 3.
Dengan demikian luas permukaannya adalah L = 2(pl + pt + lt) = 2(6 × 4 + 6 × 3 + 4 × 3) = 108
Jadi, luas permukaan minimal yang dapat dimiliki oleh balok tersebut adalah 108 cm²

Perhatikan susunan kubus di bawah.
Balok merupakan bangun ruang tiga dimensi yang dibentuk oleh tiga pasang persegi atau pers Menentukan Volume Kubus dan Balok
Banyaknya susunan kubus pada k1, k2, k3, dan seterusnya semakin bertambah dengan pola susuna
seperti pada gambar di atas.
a. Berapa banyak susuna kubus pada pola berikutnya (k4)?
b. Berapa banyak susunan kubus pada k10

k1 ⇒ 4 kubus : 2 × 2 ⇒ 2² = (1 + 1)² kubus
k2 ⇒ 9 kubus : 3 × 3 ⇒ 3² = (2 + 1)² kubus
k3 ⇒ 16 kubus : 4 × 4 ⇒ 4² = (3 + 1)² kubus
maka
k4⇒ 25 kubus : 5 × 5 ⇒ 5² = (4 + 1)² kubus

sehingga
kn⇒ .... kubus: ... × ... ⇒ ....2 = (n + 1)² kubus
Dengan demikian kita sudah mempunyai bentuk umunya, yaitu kn = (n + 1)² kubus
Jadi untuk:
a. k4 adalah k4 = (4 + 1)² = 5² = 25 kubus
b. k10 adalah k10 = (10 + 1)² = 11² = 121 kubus

Ayo Kita Menalar
Sebuah tugu akan dibangun dengan menumpuk kubus-kubus beton yang rusuknya 10 cm, seperti
tampak pada gambar di bawah. Antar sisi-sisi kubus yang berdempetan dan sisi kubus dengan lantai
akan direkat dengan semen setebal 1 cm.
Balok merupakan bangun ruang tiga dimensi yang dibentuk oleh tiga pasang persegi atau pers Menentukan Volume Kubus dan Balok
Jika tinggi tugu yang diinginkan adalah 21,99 m, berapa banyak kubus beton yang diperlukan?
Apabila ada 1 kubus berarti tingginya 1 x 10, maka lapisan semennya ada 0
Apabila ada 2 kubus berarti tingginya 2 x 10, maka lapisan semennya ada 1
Apabila ada 3 kubus berarti tingginya 3 x 10, maka lapisan semennya ada 2
Apabila ada 4 kubus berarti tingginya 4 x 10, maka lapisan semennya ada 3
Apabila ada 5 kubus berarti tingginya 5 x 10, maka lapisan semennya ada 4
Apabila ada n kubus berarti tingginya n x 10, maka lapisan semennya ada n - 1
Sehingga suku ke n = 10n +  - 1) ⇒ Un = 11n - 1
Un = 11n - 1 ⇒2199 = 11n - 1
⇒ 11n = 2.200
⇒ n = 200
Jadi banyak kubus beton yang dibutuhkan ada 200

Soal Evaluasi
1. Sebuah bak mandi berbentuk kubus memiliki panjang rusuk 1,4 m. Tentukan banyak air yang
dibutuhkan untuk mengisi bak mandi tersebut hingga penuh.
Dik : rusuk ⇒ r = 1.4 m = 14 dm
dit : Volume ⇒ V ?

Penyelesaian
V = r³
V = 14³
V = 14 x 14 x 14
V = 2.744 dm²
jadi air yang dibutuhkan adalah 2.744 liter

2. Sebuah akuarium berbentuk balok memiliki ukuran panjang 74 cm dan tinggi 42 cm. Jika
volume air di dalam akuarium tersebut adalah 31.080 cm³, tentukan lebar akuarium tersebut.
Dik : panjang = 74 cm, tinggi = 42 cm, dan V = 31.080
Ditanya lebar ?

Maka :
V = p x l x t
31.080 = 74 x 42 x lebar
31.080 = 3.108 x lebar
lebar = 31.080 /3.108
lebar = 10 cm

3. Perbandingan panjang, lebar dan tinggi sebuah balok adalah p : l : t = 5 : 2 : 1, jika luas
permukaan balok 306 cm², maka tentukan besar volum balok tersebut.
Dik : panjang = 5x, lebar = 2x, dan tinggi = x
Lp = 2(pl + pl + lt)
306 = 2((5x × 2x) + (5x × x) + (2x × x))
153 = 10x² + 5x² + 2x²
153 = 17x²
9 = x²
3 = x

V = plt
= 5x × 2x × x
= 10x² × 3
= 30(9)
= 270 cm³

4. Diketahui volume balok 100 cm³. Bagaimana cara menemukan ukuran balok tersebut? Berapa
banyak kemungkinan ukuran-ukuran yang kalian temukan?
volume = 100 cm³
  • 4 x 5 x 5 = 100 cm³
  • 2 x 5 x 10 = 100 cm³
  • 2 x 4 x 12,5 = 100 cm³

5. Sebuah batang bambu dengan diameter 10 cm dan panjang 4 meter diikat di dasar kolam
berbentuk balok dengan ukuran panjang 4,5 m, lebar 55 cm, dan tinggi 40 cm untuk direndam
dalam suatu larutan pengawet. Jika diasumsikan ujung-ujung bambu tertutup, berapa liter
larutan pengawet harus dimasukkan sampai bak menjadi penuh?
Volume bambu (tabung) = π x r² x t
=3,14. 5. 5. 400
=31.400 cm

V balok = pl.t
= 450 . 55 . 40
= 990.000

Volume larutan = Volume balok - Volume bambu
= 990.000 - 31.400
= 958.600 cm³, ubah ke liter menjadi 958,6 liter

6. Sebuah tangki penampungan minyak tanah berbentuk prisma yang alasnya berupa belah
ketupat yang panjang diagonal-diagonalnya 4 m dan 3 m. Tinggi tangki 2,5 m. Pada dasar
tangki terdapat kran yang dapat mengalirkan minyak tanah rata-rata 75 liter setiap menit.
Berapa lama waktu yang diperlukan untuk mengeluarkan minyak tanah dari tangki itu sampai
habis?
d₁ = 4m = 40 dm
d₂ = 3m = 30 dm
t. tangki = 2,5 m = 25 dm

V = d₁ x d₂ /2 x t
= 40 x 30 / 2 x 25
= 15.000 lt

Waktu yang diperlukan = 15.000 : 75 = 200 menit atau 3 jam 20 menit.

7. Perhatikan susunan kubus berikut ini.
Balok merupakan bangun ruang tiga dimensi yang dibentuk oleh tiga pasang persegi atau pers Menentukan Volume Kubus dan Balok
Banyaknya susunan kubus pada k₁, k₂, k₃, dan seterusnya semakin bertambah dengan pola
susunan seperti pada gambar di atas.
a. Berapa banyak susuna kubus pada pola berikutnya (k₄).28
b. Berapa banyak susunan kubus pada k₁₀.190